Applying Optimal Sliding Mode Based Load-Frequency Control in Power Systems with Controllable Hydro Power Plants

نویسندگان

  • Krešimir Vrdoljak
  • Nedjeljko Perić
  • Ivan Petrović
چکیده

In this paper an optimal load-frequency controller for a nonlinear power system is proposed. The mathematical model of the power system consists of one area with several power plants, a few concentrated loads and a transmission network, along with simplified models of the neighbouring areas. Firstly, a substitute linear model is derived, with its parameters being identified from the responses of the nonlinear model. That model is used for load-frequency control (LFC) algorithm synthesis, which is based on discrete-time sliding mode control. Due to a non-minimum phase behaviour of hydro power plants, full-state feedback sliding mode controller must be used. Therefore, an estimation method based on fast output sampling is proposed for estimating the unmeasured system states and disturbances. Finally, the controller parameters are optimized using a genetic algorithm. Simulation results show that the proposed control algorithm with the proposed estimation technique can be used for LFC in a nonlinear power system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control

This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...

متن کامل

Load Frequency Control for Micro Hydro Power Plants by Sliding Mode and Model Order Reduction

Micro hydro is treated as a major renewable energy resource. Such a kind of plants blooms because they can evade some dilemmas like population displacement and environmental problems. But their performance on the frequency index of power systems may be deteriorated in the presence of sudden small load perturbations and parameter uncertainties. To improve the performance, the problem of load fre...

متن کامل

Load Frequency Control in Two Area Power System Using Sliding Mode Control

In this article, the sliding mode control of frequency load control of power systems is studied. The study areaconsists of a system of water and heat. First, a mathematical model of the proposed system disturbances ismade and then sliding control mode for frequency load control is provided. By the system simulation andsliding mode control, it can be shown that the damping of oscillations is wel...

متن کامل

Optimal Adjustment of Three-Term Controller and Two-Term Compensator Performances in Hydro Power Systems for Load Frequency Control

An important issue with respect to the hydraulic power systems is the frequency stabilization. To design Load Frequency Control (LFC) with high efficiency, control parameters need to be adjusted so that the system frequency remains stable even under changeable conditions. Controlling the frequency and changes in the turbine time constant requires that three term control parameters of Proportion...

متن کامل

Sliding Mode/H∞ Control of a Hydro-power Plant

This paper presents a new approach to Load Frequency Control (LFC) for a hydro-power plant. The control algorithm combines sliding mode control with H∞ technique. The dynamic model of an entire hydro-power plant has been developed. The sliding hyperplane is constructed by H∞ full state feedback control method. The ideal lossless turbine-penstock model is used in this paper to conduct the simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010